Certificate: Data: Version: 3 (0x2) Serial Number: 4a:24:de:52:e3:9f:ef:f9:e7:12:fe:6e:77:1d:e4:f0:ae:86:fb:64 Signature Algorithm: p521_dilithium5 Issuer: C=AU, ST = Some-State, O=RootCA Validity Not Before: Jun 8 18:46:55 2023 GMT Not After: Jun 8 18:46:55 2024 GMT Subject: C = GR, ST = Thessaloniki, O = RootCA Subject Public Key Info: Public Key Algorithm: p521_dilithium5 Public-Key: (521 bit) pub: 04:00:65:8f:87:b9:fc:15:a5:25:f4:f5:e5:66:56:7b:d3:14:43:27:a6:9f:73:ae:6c:00:53:5c:c0:2f: 04:03:37:af:0d:e0:a7:2e:64:fa:0e:81:4e:33:ff:b0:37:6f:07:97:07:5e:7e:55:2e:80:47:19:e6:69: ... omitted forbrevity ... 0f:03:19:10:73:4d:79:4b:fb:1a:84:23:7a ASNI OID: secp521r1 NIST CURVE: P-521 dilithium5 Public-Key: pub: 4f:a8:b9:c7:c9:fa:df:e4:26:0e:77:c6:44:37:94:5b:8e:6e:04:bd:7d:a0:50:40:27:39:ab:07:8e:95: fb:37:65:fc:8a;be;d3:52:00:0a;69:62:cc:35:31:cf:3b;55:f4:65:6a;d8:dy:b0:73:49:10:7d;ed;c3; 9b;c7;5b;26;2b;bd;76;4f;93;14;0f;a0;16;2a;30;39;8b;99;fb;b9;7d;a3;46;cb;b8;ac;06;78;b6;d4; ... omitted for brevity ... d7:51:19:6a;be:9e;ee;37:27:9e;62:77;ea;26;ee;13:38:2b;2b;e6;3c;e2:06:47:d7:01:f6;ed;95:0b; f1:00:fb:c6:d0:8f:1a:d3:ef:ea:88:9e Signature Algorithm: p521_dilithium5 00:00:00:8a;30:81:87:02:41:51:6b:60:d6:05:0c:9b:68:f1:5d:eb:d0:28:12:3b;70:65:af;76:e6:69: f5:fd:c7:d3:d9:60:d9:9f:5c:89:d5:a7:0f:1c:dd:b7:f8:b6:5d:7b:cf:67:1abb: cc:07:a0:3c:45:57:aa: ... omitted for brevity ... 21:42:3a;38;62:55;1xEdd;d2:9b;65:93;66;3e;0d;f2;b6:04;94;df;d2:55;18;83;e8;e9;9d;94;6d;0a; 9d:38:c6:ee:4e:2f)fe:44:27:c6:cd:41:db:42:3c:62:5f)ce:dd:1f:94:94:62:d2:2d:36:c3:49:dd:de:8a: d4130:1b;50:31;c2;a1;8f;4f;b4;6d;c8;0d;5c;0c;dd;31;a5;a4;95;ba;81;cf;35;16;b4;6f;f9;d5;4c;86; ... omitted for brevity ...

On the Implementation of X.509-Compliant Quantum-Safe Hybrid Certificates

Agenda

Introduction

Application in the Defense Sector

Quantum-Safe Hybrid Certificates

- Proof-of-Concept (PoCt)
 - Overview of the Certificate Chain of Trust
 - I Implementation
 - Hybrid Certificate Structure

Conclusions

The emergence of **quantum computing** has introduced a new **dimension** of **security challenges**. Traditional cryptographic algorithms, are expected soon to be vulnerable **due to increasing quantum computing capacity**.

Therefore, the adoption of quantum-safe algorithms has become of **paramount importance**, especially in the areas of **defense and security sectors**.

NITECH: NATO Innovation and Technology - Issue 7, Published on Jul 5, 2022

Quantum-safe algorithms provide resistance against attacks from both classical and quantum computers, **ensuring** the **long-term security** of sensitive data and communications.

By incorporating quantum-safe algorithms into the Public Key Infrastructure (PKI), security and defense sectors can **mitigate the risks posed by quantum computing** and maintain the confidentiality and integrity of critical information.

Hybrid X509 certificates containing both traditional and post-quantum algorithms are a promising solution to address the threat posed by quantum technology to traditional public key cryptography.

Ensuring **backward compatibility** with traditional cryptography systems is key, allowing a **smooth transition** period to post-quantum systems.

High-level Implementation Challenges

- **Standardization and interoperability** between different hybrid certificate systems, which can limit their wide application.
- Increased overhead of post-quantum algorithms which can impact the
- performance of public key infrastructure

Recent progress...

- NIST multi-year evaluation process
- 3 new quantum-safe algorithms are in preparation to be used in 2024
 - CRYSTALS Kyber (initial public draft FIPS 203) [general encryption]
 - CRYSTALS Dilithium (initial public draft FIPS 204) [digital signatures]
 - SPHNICS+ (initial public draft FIPS 205) [digital signatures]
 - + 1 pipelined (FALCON) [digital signatures]

A **second set** of algorithms with alternative defense methods is expected to be evaluated in case the 1st set show weaknesses

This presentation...

- Demonstrate a **proof of concept (PoCt) implementation** based on a fork of the openssl project, utilizing the open quantum safe (oqs) library;
- focuses on certificates for **digital signatures**, combining the traditional algorithm **ECDSA** and the post quantum algorithm **Crystals-Dilithium**;
- outlines the essential steps for generating, distributing, and verifying hybrid X509 certificates through a trust chain consisting of a Root Certification Authority (CA) and an Intermediate CA.

Application in the Defense Sector

Application in the Defense Sector

Hybrid X509 certificates enhance Authenticity, Integrity and Non-repudiation

PKI spans across a wide area of modern communication systems

NATO PKI is one example, underpinning Multi Domain Operations (MDO)

- Some application areas:
- Network communication security
- Unmanned Aerial Vehicles (UAVs)
- Submarine operations

https://www.jwc.nato.int/application/files/1516/3281/0425/issue37_21.pdf

Application in the Defense Sector

Mitigates or eliminates the risk of "Harvest now....decrypt later..."

Quantum-Safe Hybrid Certificates

Quantum-Safe Hybrid Certificates

digital signature algorithms such as RSA, DSA, ECDSA were proven to be more than secure, but security concerns begun to arise when assumptions were made that attackers own quantum computers;

Pre-Quantum -> Post-Quantum: During this **transition**, it is important to **ensure a seamless cryptographic security**, maintaining current levels of security and functionalities.

Quantum-Safe Hybrid Certificates

Instead of totally replacing current algorithms with arguably less-studied and lesssupported post-quantum ones, the scientific community came up with 2 approaches:

- combining a traditional and a post-quantum algorithm into the same X509 fields by concatenating the shared secrets;
- extending the schema of the present certificate structure with additional extensions;

both, fully compatible with the latest recommendations of ITU-T.

Objectives...

- show that it is no "rocket-science" (...any more);
- demonstrate how easy it is to implement;
- highlight that open source community is heavily contributing;
 - Industry partners are developing similar service wrappings based on open source solutions

Implementing...

The PoCt was created on a virtualized environment

- hosted on a VMware ESXi 7.0 U2 hypervisor
- based on Ubuntu Linux (64-bit)
- 8 CPUs and 12 GB of memory

Our implementation combines the <u>traditional</u> **ECDSA** algorithm over the **P-521 elliptic curve**, using **SHA-512** as the hash function, along with the <u>quantum-safe</u> algorithm **Crystals Dilithium5**.

NIST Security Strength Categories

Category	Description
	Any attack that breaks the relevant security definition must require computational resources comparable to or greater than those required
1	for key search on a block cipher with a 128-bit key (e.g. AES128)
2	for collision search on a 256-bit hash function (e.g. SHA256/ SHA3-256)
3	for key search on a block cipher with a 192-bit key (e.g. AES192)
4	for collision search on a 384-bit hash function (e.g. SHA384/ SHA3-384)
5	for key search on a block cipher with a 256-bit key (e.g. AES 256)

Implementing...

- Create RootCA (*offline process)
 - Create a RootCA Private Key and a self signed RootCA Certificate

apps/openssl req -x509 -newkey p521_dilithium5 -keyout sto/RootCAkey_ecdsa_dil5.pem -out sto/RootCAcert_ecdsa_dil5.pem -config apps/openssl.cnf

Implementing...

Create IntermediateCA

Create IntermediateCA Private Key and IntermediateCA Certificate Signing Request (CSR) apps/openssl req -newkey p521_dilithium5 -keyout sto/IntermediateCAkey_ecdsa_dil5.pem -out sto/IntermediateCAcsr_ecdsa_dil5.csr -config apps/openssl.cnf

Create IntermediateCA Certificate by signing it with RootCA Certificate

apps/openssl x509 -req -in sto/IntermediateCAcsr_ecdsa_dil5.csr -CA sto/RootCAcert_ecdsa_dil5.pem -CAkey sto/RootCAkey_ecdsa_dil5.pem -out sto/IntermediateCAcert_ecdsa_dil5.pem -extfile sto/ca_intermediate.ext -extensions v3_intermediate_ca

Verify IntermediateCA Certificate against RootCA Certificate

apps/openssl verify -CAfile sto/RootCAcert_ecdsa_dil5.pem sto/IntermediateCAcert_ecdsa_dil5.pem

Implementing...

- Create User Certificate
 - Create User Key Pairs and CSR

apps/openssl req -newkey p521_dilithium5 -keyout sto/User1key_ecdsa_dil5.pem -out sto/User1csr_ecdsa_dil5.csr -config apps/openssl.cnf

Create User Certificate by signing it with IntermediateCA Certificate

apps/openssl x509 -req -in sto/User1csr_ecdsa_dil5.csr -CA sto/IntermediateCAcert_ecdsa_dil5.pem -CAkey sto/IntermediateCAkey_ecdsa_dil5.pem -out sto/User1cert_ecdsa_dil5.pem

Verify User Certificate against IntermediateCA Certificate

apps/openssl verify -CAfile sto/RootCAcert_ecdsa_dil5.pem -untrusted sto/IntermediateCAcert_ecdsa_dil5.pem sto/User1cert_ecdsa_dil5.pem

Hybrid Certificate Structure

Certificate ::= SEQUENCE {			SubjectPublicKeyInfo ::= SEQUENCE {		
TBSCertificate,	-	algorithm	AlgorithmIdentifier,		
AlgorithmIdentifier,		subjectPublicKey	BIT STRING }		
BIT STRING }					
			AlgorithmIdentifier ::= SEQUENCE {		
TBSCertificate ::= SEQUENCE {			OBJECT IDENTIFIER,		
Version,		parameters	ANY DEFINED BY algorithm OPTIONAL		
CertificateSerialNumber,	}				
AlgorithmIdentifier,					
Name,	Version ::=	Version ::= INTEGER { $v1(0), v2(1), v3(2)$ }			
Validity,					
SubjectPublicKeyInfo,}					
	TBSCertificate, AlgorithmIdentifier, BIT STRING } { Version, CertificateSerialNumber, AlgorithmIdentifier, Name, Validity, SubjectPublicKeyInfo,}	SubjectPubTBSCertificate,AlgorithmIdentifier,BIT STRING }AlgorithmIdentifier,{Version,CertificateSerialNumber,}AlgorithmIdentifier,Name,Version ::=Validity,SubjectPublicKeyInfo,}	SubjectPublicKeyInfo ::= SEQUTBSCertificate,algorithmAlgorithmIdentifier,subjectPublicKeyBIT STRING }AlgorithmIdentifier ::= SEQUEN{algorithmVersion,parametersCertificateSerialNumber,}AlgorithmIdentifier,>Name,Version ::= INTEGER { v1(0),Validity,SubjectPublicKeyInfo,}		

public key value is the concatenated value of the ECDSA with the respected value of

Dilithium5: subjectPublicKey=Pub(ECDSA_p521) || Pub(Dilithium5)

the signature value is the concatenated value of the aforementioned algorithms, thus: signatureValue=Sig(ECDSA_p521) || Sig(Dilithium5)

Certificate:	
Data:	
Version: 3 (0x2)	
Serial Number:	
4a:24:de:52:e3:9f:cf:f9:e7:12:fc:6c:77:1d:c4:f0:ac:86:fb:64	
Signature Algorithm: p521 dilithium5	
Issuer: $C = AU$, $ST = Some-State$, $O = RootCA$	
Validity	
Not Before: Jun 8 18:46:55 2023 GMT	
Not After: Jun 8 18:46:55 2024 GMT	
Subject: $C = GR$, $ST = Thesaloniki$, $O = RootCA$	
Subject Public Key Info:	
Public Key Algorithm: p521 dilithium5	
Public-Key: (521 bit)	
pub:)
04:00:65:8f:87:b9:fc:15:a5:25:f4:f5:e5:66:56:7b:d3:14:43:27:a6:9f:73:ae:6c:00:53:5c:c0:2f: 2 Bytes ASN1 prefix	
04:03:37:af:0d:e0:a7:2e:64:fa:0c:81:4e:33:ff:b0:37:6f:07:97:07:5e:7c:55:2c:80:47:19:e6:69: 131 Bytes EC DSA Public Key	
omitted for brevity	
0f:03:19:10:73:4d:79:4b:fb:1a:84:23:7a	
ASN1 OID: secp521r1	
NIST CURVE: P-521	Concatenated
dilithium5 Public-Key:	Public Keys
pub:	TLVSeparated
4f:a8:b9:c7:c9:fa:df:e4:26:0e:77:c6:44:37:94:5b:8c:6c:04:bd:7d:a0:50:40:27:39:ab:07:8c:95:	
fb:37:65:fc:8a:be:d3:52:00:0a:69:62:cc:35:31:cf:3b:55:f4:65:6a:d8:eb:b0:73:49:10:7d:ed:c3:	
9b:c7:5b:26:2b:bd:76:4f:93:14:0f:a0:16:2a:30:39:8b:99:fb:b9:7d:a3:46:cb:b8:ac:06:78:b6:d4: 2592 Bytes Dilithium5 Public Key	r
omitted for brevity	
d7:51:19:6a:bc:9c:ee:37:27:9c:62:77:ca:26:ec:13:38:2b:2b:e6:3c:c2:06:47:d7:01:f6:ed:95:0b:	/
f1:00:fb:c6:d0:8f:1a:d3:ef:ea:88:9e	

Conclusions

Conclusions

- Quantum technology emerges, resulting in the progressive obsolescence of traditional cryptographic algorithms
- Latest progress shows that the development and standardization of quantum-safe algorithms is under a good momentum
- In this presentation, we demonstrated how to create a basic PoCt for a hybrid PKI compatible with traditional and quantum-safe cryptographic algorithms
- Such PKI can underpin multi domain operations, future-proofing authenticity, integrity and non-repudiation in the modern warfare

Contacts

E-mail Dimitrios.Chatziamanetoglou@ncia.nato.int diehatz@cs.ihu.gr Phone +32 65 44 1525, +32 475 55 1479